SYNTHESIS AND BIOLOGICAL ACTIVITY OF A 5,6-SUBSTITUTED TELEOCIDIN

Robert R. Webb II,* and Michael C. Venuti
Bioorganic Chemistry Department, Genentech, Inc., 460 Pt. San Bruno Blvd.,
South San Francisco, California 94080

(Received 3 March 1992)

Abstract. The synthesis of 5,6-substituted teleocidin analogue 3 is reported. Reduction of oxime 7 (obtained from indole 6) gave diastereometric amines 8 and 9 which were cyclized to give esters 10 and 11, respectively. Reduction of 10 yielded teleocidin analogue 3, which displayed activity comparable to (-)-indolactam V in a standard ${}^{3}[H]$ -phorbol-dibutyrate binding assay.

The teleocidins continue to be of interest, not only as tumor promoters and activators of Protein Kinase C (PKC),^{1,2} but also as departure points for the design of effective inhibitors. The search for inhibitors has intensified,³ due in large part to a recent report implicating PKC in *tat* trans-activation, a process believed to be crucial for HIV infectivity.⁴ One of the issues remaining to be resolved with regard to understanding the mode of action of the teleocidin tumor promoters is the function of the N-methyl group at the 4-position of the indole nucleus. In the course of preparing teleocidin 2 (an analogue of teleocidin B-4 (1)),⁵ we became interested in the des-methyl isomeric analogue 3. While molecular models of 3 showed severe steric crowding about the nitrogen at the 4-position, which convinced us that the N-methyl compound would be impossible to prepare, these same models showed steric interactions between the gem-dimethyl group at position 5 and the isopropyl group at position 12 that might produce a conformation of the 9-membered ring lactam similar to that found in the (N-methylated) teleocidins.¹ As very few 5-substituted and 6-substituted indolactams have been reported,⁶ and since the indole needed for the synthesis of 3 was readily available, we sought to prepare the des-methyl compound 3 and evaluate it's biological activity.

The chemistry used to prepare these compounds follows literature precedent .5,9 Indole 45 was reduced with iron in acetic acid/ethanol⁷ to give the air-sensitive amino indole 5 in 66% yield.⁸

This amine was alkylated with the triflate of (*R*)-2-hydroxyvaleric acid benzyl ester⁹ in refluxing dichloroethane containing 2,6-lutidine to give the N-valyl indole 6 in 63% yield.¹⁰ Alkylation at the 3-position of indole 6 was accomplished in CH₂Cl₂/K₂CO₃ with ethyl(3-bromo-2-oximido)-propionate (Gilchrist's reagent¹¹) giving oxime 7 in 50% yield.¹² Reduction of oxime 7 (Al(Hg)) furnished a 3:1 mixture of the diastereomeric amines 8 and 9 (90% total).¹³ These amines were easily separated by flash chromatography, and subjected to hydrogenolysis of the benzyl ester and BOP coupling to accomplish the closure of the 9-membered rings.^{5,9} Ester 10¹¹ (derived from amine 8 in 55% yield) gave two conformers as displayed in the ¹H NMR, with the major conformer dominating in the ratio of 3 to 1. This ester was reduced with LiBH₄ in tetrahydrofuran giving alcohol 3¹² in 90% yield, which was characterized by the presence of "twist"/"sofa" conformers¹³ as evidenced in the ¹H NMR (1:1 ratio).

R
H, N
$$CO_2Bn$$
R
 $A: R = NO_2$
 $5: R = NH_2$
 $A: R = NO_2$
 $5: R = NH_2$
 $A: R = NO_2$
 $A: R = N$

As demonstrated by the teleocidins and IL-V, the methylene protons at position 8 displayed a significant nOe with the methine proton at position 12 in the ROESY spectrum. Ester 11 (derived from amine 9), on the other hand, appeared as a single compound by ¹H NMR, and was reduced (LiBH₄/THF)⁵ to give alcohol 12.

Even though it lacks both substitution at the 7 position of the indole and an N-methyl group, teleocidin 3 demonstrated a level of binding to PKC comparable to that of (-)-indolactam V in a standard ³[H]-PDBU assay (IC₅₀ of 400nM vs 150nM for (-)-ILV; des-methyl-(-)-ILV proved inactive in this assay). ¹⁷ Accordingly, teleocidin 12 showed no binding activity at all, even at concentrations of 0.01 mM. ¹⁷ This level of potency is surprising since generally it has been assumed that the N-methyl group present in the teleocidins is required for tumor promoting activity. It is also of interest that other 5-substituted indolactams *possessing an N-methyl group*, showed reduced activity from that of (-)-ILV. ¹⁶ The above observations would seem to confirm that the stereochemistry at position 9 is the single most crucial structural aspect of these compounds, consistent with literature observations. ¹⁶ It would appear that the presence or absence of an N-methyl group and substitution at positions 5 and 6 have mixed effects on activity.

Acknowledgement. The authors thank Dr. Thomas Gadek for his assistance in obtaining 2D NMR spectra.

References

- 1. Fujiki, H.; Sugimura, T. Adv. Cancer Res. 1987, 49, 223.
- 2. Kozikowski, A.P.; Shum, P.W.; Basu, A.; Lazo, J.S. J. Med. Chem. 1991, 34(8), 2420-
- Davis, P.D.; Hill, C.H.; Lawton, G.; Nixon, J.S.; Wilkinson, S.E. Hurst, S.A.; Keech, E.; Turner, S.E. J. Med. Chem. 1992, 35(1), 177-184.
- 4. Jakobovits, A.; Rosenthal, A.; Capon, D.J. EMBO J. 1990, 9, 1165-1170.
- 5. Webb, R.R.; Venuti, M.C.; Eigenbrot, C. J. Org. Chem. 1991, 56, 4706.
- 6. Irie, K.; Koshimizu, K. Mem. Coll. Agric., Kyoto Univ. 1988, 132, 1.
- 7. Krolski, M.E.; Renaldo, A.F.; Rudisill, D.E.; Stille, J.K. J. Org. Chem. 1988, 53, 1170.
- (5): mp. 186-187°C (CH₂Cl₂/hexane); ¹H NMR δ8.19(brs, 1H, ArNHCH=), 7.08(t, J=3Hz, 1H, ArNHCH), 6.42(s, 1H, Ar), 6.39(dd, J=2Hz, 1H, ArCH=CH), 3.78(brs, 2H, exch., ArNH₂), 1.75(m, complex, 2H, ArC(CH₃)₂CH₂), 1.68(m, complex, 2H, ArC(CH₃)₂CH₂), 1.44(s, 6H, ArC(CH₃)₂), 1.29(s, 6H, ArC(CH₃)₂); Anal. (C₁6H₂2N₂) C, H, N.
- 9. Kogan, T.P.; Somers, T.C.; Venuti, M.C. Tetrahedron 1990, 6623.
- 10. **(6)**: ¹H NMR δ8.20(brs, 1H, NH), 7.27(m, 5H, ArH), 7.04(t, J=3Hz, 1H, ArNHCH=), 6.43(m, 1H, NCH=), 6.25(s, 1H, ArH), 5.16(B part, ABqd, J=1, 12Hz, 1H, ArCH2), 5.07(B part, ABq, J=12Hz, 1H, ArCH2), 4.02(d, J=6Hz, 1H, HNCH(ipr)), 4.04(t, J=6Hz, 1H, CH(ipr)CO₂Bn), 2.19(sextet, J=6Hz, 1H, CH(CH₃)₂), 1.68(m, complex, 4H, CH₂CH₂(CH₃)₂), 1.42(s, 6H, C(CH₃)₂), 1.28(s, 3H, C(CH₃)₂), 1.23(s, 3H, C(CH₃)₂), 1.09(dd, J=1.5, 6Hz, 3H, CH(CH₃)₂), 1.03(dd, J=1.5, 6Hz, 3H, CH(CH₃)₂); high res MS (C₂8H₃6N₂O₂) 432.2776; found 432.2811.
- 11. Gilchrist, T.L.; Lingham, D.A.; Roberts, T.G. J. Chem. Soc.Chem. Commun. 1979, 1089.
- 12. **(7)**: ¹H NMR δ9.38(brs, 1H, exch., NO<u>H</u>), 7.94(brs, 1H, not exch., ArN<u>H</u>CH=C), 7.22(m, 5H, CH₂Ar<u>H</u>), 6.86(d, J=1Hz, 1H, ArNHC<u>H</u>=), 6.15(s, 1H, Ar<u>H</u>), 5.48(br s, 1H, exch., ArN<u>H</u>CH(ipr)), 5.05(ABq, J=12Hz, 2H, C<u>H</u>2Ar), 4.34(B part, ABq, J=12Hz, 1H, C<u>H</u>2C(=NOH)CO₂Et), 4.18(ABq, J=6Hz, OC<u>H</u>2CH₃), 4.12(A part, ABq, J=12Hz, 1H, C<u>H</u>2C(=NOH)CO₂Et), 3.82(d, J=6Hz, 1H,

- NCH(ipr)CO₂Bn), 2.10(sextet, J=6Hz, 1H, CH(CH₃)₂), 1.62(m, complex, 2H, C(CH₃)₂CH₂), 1.54(m, complex, 2H, C(CH₃)₂CH₂), 1.31(s, 6H, C(CH₃)₂), 1.20(t, J=6Hz, 3H, CH₃CH₂O), 1.17(s, 3H, (CH₃)₂C), 1.10(s, 3H, C(CH₃)₂), 1.05(d, J=6Hz, 3H, CH(CH₃)₂), 0.95(d, J=6Hz, 3H, CH(CH₃)₂); high res MS(C₃₁H₄₃N₃O₅) 561.3202, found 561.3200.
- 13. **(8)**: mp 100-102°C: ¹H NMR δ8.05(s, 1H, N<u>H</u>), 7.28(m, complex, 5H, Ar<u>H</u>), 6.87(d, J=2.5Hz, ArNHC<u>H</u>=), 6.20(br s, 1H, exch., N<u>H</u>), 5.12(ABq, J=12Hz, 2H, C<u>H</u>2Bn), 4.22(ABqd, J=3, 6Hz, 2H, OC<u>H</u>2CH3), 3.98(m, 1H, NHC<u>H</u>(ipr)CO₂Bn), 3.86(dd, J=3, 9Hz, 1H, H2NC<u>H</u>CO₂Et), 3.47(B part, ABqd, J=3, 15Hz, 1H, C<u>H</u>2CH(NH2)CO₂Et), 3.00(A part, ABqd, J=9, 15Hz, 1H, C<u>H</u>2(NH2)CO₂Et), 2.22(sextet, J=6Hz, 1H, C<u>H</u>(CH3)2), 1.71(m, 2H, C(CH3)2C<u>H</u>2), 1.66(m, C(CH3)2C<u>H</u>2), 1.43(s, 6H, C(C<u>H</u>3)2), 1.28(s, 3H, C(C<u>H</u>3)2), overlapping 1.28(t, J=6Hz, 3H, OCH₂C<u>H</u>3), 1.20(s, 3H, C(C<u>H</u>3)2), 1.12(d, J=6Hz, 3H, CH(C<u>H</u>3)2), 1.05(d, J=6Hz, 3H, CH(C<u>H</u>3)2); Anal (C33H45N3O4) C, H, N.
- 14. **(10)**: ¹H NMR, major conformer (ratio major/minor=3:1): δ8.18(br s, 1H, indole-ArNH), 6.93(s, 1H, ArH), 6.84(d, J=3Hz, 1H, ArNHCH=), 5.46(B part, ABq, J=12Hz, 1H, CH2CH(NH)), 5.11(A part, ABq(d), J=3, 12Hz, 1H, CH2CH(NH)), 4.16(m, 2H, OCH2CH3), 3.45(dd, J=6, 12Hz, 1H, HNCH(ipr)CO), 2.96(br s, 1H, ArNH), 2.79(d, J=12Hz, 1H, CONHCHCO2Et), 2.25(m, complex, 1H, CH(CH3)2), 1.72(m, complex, 4H, CH2CH2C(CH3)2), 1.46 and 1.44(s, 3H each, C(CH3)2), 1.37(d, J=6Hz, 3H, CH(CH3)2), 1.32(s, 6H, C(CH3)2), 1.28(t, J=6Hz, 3H, OCH2CH3), 0.98(d, J=6Hz, 3H, CH(CH3)2); ¹³C NMR(major conformer) δ174.95(CO2Et), 170.81(CONH), 140.28, 139.60, 136.33, 124.63, 124.18, 123.26, 118.78(Ar), 107.49, 75.54 (OCH2CH3), 1.13(HNCHCO2Et), 57.80(CH2CH(NH)CO2Et), 37.73 and 35.07(C(CH3)2), 34.19 and 33.37(CH2CH2CH2C(CH3)2), 32.10, 32.02, 28.64 and 28.56(C(CH3)2), 27.86(CH(CH3)2), 19.79 and 19.58(CH(CH3)2), 14.35(OCH2CH3); MS(EI) *m/e* (relative intensity, %) 439.4 (100, M+); high res MS(C26H37N3O3) 439.2834, found 439.2857.
- 15. **(3)**: mp >240°C(dec.); ¹H NMR twist conformer (ratio twist/sofa=1.5:1): δ8.09(br s, 1H, N<u>H</u>), 6.85(d, J=3Hz, 1H, NH-C<u>H</u>), 6.62(s, 1H, Ar<u>H</u>), 6.38(d, J=9Hz, 1H, CON<u>H</u>), 5.39(br s, 1H, NHC<u>H</u>CH₂OH), 3.74(dd, J=4, 12Hz, 1H, CH₂OH), 3.55(m, overlapping sofa, 1H, C<u>H</u>₂OH), 2.93(q, overlapping sofa, J=9Hz, 2H, CH=CC<u>H</u>₂), 2.76(d, J=12Hz, 1H, NHC<u>H</u>CO), 2.27(m, overlapping sofa, 1H, (CH₃)₂C<u>H</u>), 1.65(m, 4H, (CH₃)₂CC<u>H</u>₂), 1.43(s, 3H, (C<u>H</u>₃)₂C), 1.41(s, 3H, (C<u>H</u>₃)₂C), 1.30(s, 3H, (C<u>H</u>₃)₂C), 1.26(s, 3H, (C<u>H</u>₃)C), 1.19(d, J=6Hz, 3H, (C<u>H</u>₃)₂CH), 1.03(d, J=6Hz, 3H, (C<u>H</u>₃)₂CH); sofa conformer: δ8.33(br s, 1H, N<u>H</u>), 6.96(d, J=3Hz, 1H, NH-C<u>H</u>), 6.93(s, 1H, Ar<u>H</u>), 4.97(d, J=11Hz, 1H, CON<u>H</u>), 4.43(m, 1H, NHC<u>H</u>COH), 3.56(m, overlapping twist, 1H, C<u>H</u>₂OH), 3.46(m, overlapping twist, 1H, C<u>H</u>₂OH), 3.27(dd, J=3, 9Hz, 1H, CH=CC<u>H</u>₂), 2.98(m, overlapping twist, 1H, CH=CC<u>H</u>₂), 2.79(dd, J=3, 9Hz, 1H, NHC<u>H</u>CO), 1.71(m, overlapping twist, 1H, (CH₃)₂CCH), 1.32(s, 3H, (C<u>H</u>₃)₂C), 1.45(s, 3H, (C<u>H</u>₃)₂C), 1.36(d, J=6Hz, 3H, (C<u>H</u>₃)₂CH), 1.32(s, 3H, (C<u>H</u>₃)₂C), 1.29(s, 3H, (C<u>H</u>₃)C), 0.96(d, J=6Hz, 3H, (C<u>H</u>₃)₂CH); high res MS (C₂4H₃5N₃O₂) 397.2729, found 397.2730. Anal. (C₂4H₃5N₃O₂) C, H, N.
- 16. Endo, Y.; Shudo, K.; Itai, A.; Hasegawa, M.; Sakai, S. *Tetrahedron* **1986**, *42*(21), 5905. 17. Ashendel, C.L. *Biochem. Biophys. Acta* **1985**, *822*, 219.